UVAOJ165

Written by    16:53 March 10, 2015 

UVAOJ165

165 – Stamps

Time limit: 3.000 seconds

 Stamps 

The government of Nova Mareterrania requires that various legal documents have stamps attached to them so that the government can derive revenue from them. In terms of recent legislation, each class of document is limited in the number of stamps that may be attached to it. The government wishes to know how many different stamps, and of what values, they need to print to allow the widest choice of values to be made up under these conditions. Stamps are always valued in units of $1.

This has been analysed by government mathematicians who have derived a formula for n(h,k), where h is the number of stamps that may be attached to a document, k is the number of denominations of stamps available, and n is the largest attainable value in a continuous sequence starting from $1. For instance, if h=3, k=2 and the denominations are $1 and $4, we can make all the values from $1 to $6 (as well as $8, $9 and $12). However with the same values of h and k, but using $1 and $3 stamps we can make all the values from $1 to $7 (as well as $9). This is maximal, so n(3,2) = 7.

Unfortunately the formula relating n(h,k) to h, k and the values of the stamps has been lost–it was published in one of the government reports but no-one can remember which one, and of the three researchers who started to search for the formula, two died of boredom and the third took a job as a lighthouse keeper because it provided more social stimulation.

The task has now been passed on to you. You doubt the existence of a formula in the first place so you decide to write a program that, for given values of h and k, will determine an optimum set of stamps and the value of n(h,k).

Input

Input will consist of several lines, each containing a value for h and k. The file will be terminated by two zeroes (0 0). For technical reasons the sum of h and k is limited to 9. (The President lost his little finger in a shooting accident and cannot count past 9).

Output

Output will consist of a line for each value of h and k consisting of the k stamp values in ascending order right justified in fields 3 characters wide, followed by a space and an arrow (->) and the value of n(h,k) right justified in a field 3 characters wide.

Sample input

Sample output

题意是给出h,k,h是一张信封上面最多可以贴的邮票数目,k是邮票最多的面值个数,然后求邮票可以组成的连续面值的最大数的最大值n(h, k)是多少,比如h,k分别为3 2 的时候,邮票的面值种类分别为1和3时,邮票可以组成的面值分别为1 2 3 4 5 6 7 9,故连续数的最大数是7,然后遍历所有情况过后连续数最大数的最大值是7,故n(h, k) = 7。

已知对于每一对h、k,n(h, k)都有一个固定的值,所以可以先假设h一定,然后分别求n(h, 1), n(h, 2)…直至求到n(h, k),然后还必须知道的是对于第i张邮票ai,ai对应的是n(h, i),ai的面值取值范围是(a(i-1), n(h,i-1)+1]。

剩下的就开始暴力吧!

 

Category : acmstudy

Tags :